Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting.
نویسندگان
چکیده
Dopaminergic lesions result in the acute loss of striatal dopamine content, the loss of tyrosine hydroxylase-immunoreactive fibers, upregulation of preproenkephalin mRNA expression, and compensatory changes in the synthesis and metabolism of dopamine. Despite the severe loss of fine tyrosine hydroxylase-immunoreactive fibers, larger fibers persist. We found that some tyrosine hydroxylase fiber types increase their branching and become thicker after partial lesion. To determine whether the remaining tyrosine hydroxylase fibers were degenerative or part of a compensatory response, we morphologically characterized striatal tyrosine hydroxylase fibers and compared them to silver-stained degenerative structures. Branched and large tyrosine hydroxylase fiber types were nondegenerative. Furthermore, normal preproenkephalin mRNA expression was maintained despite severe overall loss of tyrosine hydroxylase fibers in striatal regions with abundant branching, whereas preproenkephalin mRNA expression increased in severely depleted regions that lacked branched fibers, indicating that branching or sprouting was involved in the compensation for dopamine depletion and the maintenance of normal preproenkephalin expression. In support of compensatory sprouting by tyrosine hydroxylase fibers, mRNA for growth associated protein-43 was upregulated in dopaminergic midbrain cells. We conclude that an important compensatory response to partial dopaminergic depletion is the formation of new branches or sprouting.
منابع مشابه
Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease.
Neurodegenerative diseases become clinically apparent only after a substantial population of neurons is lost. This raises the possibility of compensatory mechanisms in the early phase of these diseases. The importance of understanding these mechanisms cannot be underestimated because it may guide future disease-modifying strategies. Because the anatomy and physiology of the nigrostriatal dopami...
متن کاملThe role of dopamine receptors in regulating the size of axonal arbors.
Factors that regulate terminal arbor size of substantia nigra pars compacta (SNpc) neurons during development and after injury are not well understood. This study examined the role of dopamine receptors in regulating arbor size. Terminal arbors were examined in mice with targeted deletion of the D1 or D2 dopamine receptor [D1(-/-) and D2(-/-) mice, respectively]. Terminal trees were also examin...
متن کاملActivated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor.
Nigrostriatal dopaminergic neurons undergo sprouting around the margins of a striatal wound. The mechanism of this periwound sprouting has been unclear. In this study, we have examined the role played by the macrophage and microglial response that follows striatal injury. Macrophages and activated microglia quickly accumulate after injury and reach their greatest numbers in the first week. Subs...
متن کاملLoss of Homeostasis in the Direct Pathway in a Mouse Model of Asymptomatic Parkinson's Disease.
UNLABELLED The characteristic slowness of movement in Parkinson's disease relates to an imbalance in the activity of striatal medium spiny neurons (MSNs) of the direct (dMSNs) and indirect (iMSNs) pathways. However, it is still unclear whether this imbalance emerges during the asymptomatic phase of the disease or if it correlates with symptom severity. Here, we have used in vivo juxtacellular r...
متن کاملLocus Ceruleus Lesion by Local 6-hydroxydopamine Infusion Causes Markd and Specific Destruction of Noradrenergic Neurons, Long-term Depletion of Norepinephrine and the Enzymes That Synthesize It, and Enhanced Dopaminergic Mechanisms in the Ipsilateral Cerebral Cortex’ Sam1 I. Harik
The local stereotaxic microinfusion of 5 pg of 6-hydroxydopamine in the region of the nucleus locus ceruleus causes severe loss of noradrenergic neurons with little evidence of nonspecific tissue reaction or destruction that could be detected by conventional light microscopic methods. Such lesion is accompanied by a marked and long-term depletion of norepinephrine and comparable loss of activit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 13 شماره
صفحات -
تاریخ انتشار 2000